
DISSIPATION OF THE ENERGY OF AN EXPLOSION IN A POROUS 

ELASTOPLASTIC MEDIUM 

E. E. Lovetskii, A. M. Maslennikov, 
and V. S. Fetisov 

UDC 534.222 

A considerable fraction of the energy of an explosion in a solid medium is dissipated 
in the substance surrounding the charge. The dissipation of the energy of an explosion takes 
place behind the front of a shock wave with plastic flow of the substance behind the front 
of the shock wave. Part of the energy goes over into the energy of the residual elastic 
deformations. A small part of the total energy of the explosion is emitted in the form of 
shock waves. Many real rocks are porous, with one degree or another of gas or water satur- 
ability. Therefore, the question of energy losses with an explosion in porous saturated med- 
ia is of considerable interest [i]. A theoretical study of the question of the dissipation 
of the energy with an explosion in a porous medium, whose deformation takes place plastical- 
ly, was made in [2, 3]. The consideration given in these communications is limited to the 
case of the complete collapse of the empty pores at the shock front. The substance behind 
the front of the shock wave was assumed to be incompressible. In the present article an in- 
vestigation is made of the redistribution of the energy of an underground explosion in a sat- 
urated porous medium, The investigation was made using a numerical solution of a system of 
equations of hydrodynamics, taking account of the shear strength of the porous substance. 
The discussion is limited by the assumption of the equality of the pressures in the skeleton 
and the saturated gas or liquid. Multicomponent media are taken into consideration using a 
model equation of state. 

i. The starting system of equations describing an underground explosion under the as- 
sumption of spherical symmetry, written in Lagrangian variables, has the form 

o---i-=v -~F + 2 r  , 
(i.i) 
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where v and e are the specific volume and the specific energy of the medium as a whole; u 
is the velocoty; r = o r -- o~v; o r and ~@ are the radial and tangential components of the stress 
tensor; p =--I/3(0 r + 2o~9) is t~e pressure e. The Euler coordinate r is connected with the 
Lagrangian coordination ro by the relationship 

t 

r = r o + !  U(ro; t ' )d t ' .  

The tensor oij is the total tensor of the stresses, acting on an element of the porous medi- 
um. In turn, oij can be connected with the stresses ~.(.*), acting in the solid component, and 

13 
with the pressure of the gas or liquid p,, filling the pores [4]: 

~is (i-- . (i) = m) ~ij -- mPl 6tl 

(m is the porosity; ~.. is the Kronecker symbol). 
m3 

The further assumption is made that the press, u;es in the skeleton and the substance in 
the pores are equal, i.e., we shall assume that ~t.i. ) = ~3p,. Such a postulation is complete- 

l! 

ly justified in the region of high pressures (~10 kbar). With small external loads, the pres- 
sures in the skeleton and the saturated pores will he different. In what follows, these dif- 
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ferences are neglected. The study of the case o!.~) = 3p~ is the subject of a separate inves- 
tigation, ii 

The flow of the porous substance is describedby the following relations: 

in the elastic region 

in the plastic region 

I'~I = o *  Jr  kp, 

where G is the shear modulus; o* is the adhesion; k is the coefficient of dry friction. 

The system of equations (i.i) is closed by the thermodynamic equation of state. For a 
multicomponent medium, we take the equation of state in the form [5, 6] 

3 3 

e = ~ Bier, v -  '~  Riv ~, ( 1 . 2 )  
{=i i=l 

where e i and v.l are the specific energies and volumes of the corresponding components; R.l 

are their weight contents = i . 

The equations of state for the solid component and the substance in the pores (gas or 
liquid) were taken in the Mie--GrHneisen form [7] 

L \ - C ]  - 

L \  "~ ] 

ric i (7 -- To) 
i § ~i ' 

(1.3) 

In carrying out the actual calculations, the constants entering into (1.3) were determined 
on the basis of data given in [8]. 

Water: B~ = 3.2,103 bar; vl -I = i g/cm3; nl = 7; rl = 0.6; To = 273~ el = 3.72"103 kJ/ 
Todeg. 

Solid skeleton: B2 = 105 bar; v2 -I = 2.65 g/cm3; n2 = 3; F2 = i; To = 273~ c2 = 103 
kJ/T-deg; G = 105 bar. 

The gaseous component was assumed to be an ideal gas with the adiabatic index ~= 1.4. 
We note that the temperature of all the components was assumed to be identical. Correspond- 
ing evaluations are given in [9]. The system (1.1)-(1.3) was replaced by a system of equa- 
tions in finite differences. The difference scheme, analogous to [i0], had a second order of 
exactness with respect to the time and the coordinate, by virtue of the use of a uniform La- 
grangian grid, which remained unchanged for the course of the whole calculating process. For 
the purpose of smoothing out the hydrodynamic discontinuities, an artificial linear-quadratic 
viscosity was introduced [i0]. The stability of the scheme was assured by an appropriate 
selection of the time spacing At. The use of a pseudoviscosity offered the possibility of a 
straight-through numerical calculation from the center of the gas cavity to the unperturbed 
medium. 

The explosion was modeled by an expansion of a gas cavity with a radius ao with an ini- 
tial pressure of 400 kbar. The calculating points inside the cavity made it possible to 
take account of the complex gasdynamic motion of the gas inside the cavity, which was as- 
sumed to be ideal with an adiabatic index of i, 2. 

2. The energy characteristics of the medium with an underground explosion for different 
calculating variants are give n in Table I, 

El 4~ ~ p 
U 2 

: ---~-r~dr 
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is the kinetic energy of the medium (the integrals in Ei and E2 are taken over the air re- 
gion); 

is the energy dissipated due to plastic flow; 

E 3 = = ]p.(v--v.)r~dr 

is the energy dissipated in the wave front (PH' VH are the pressure and the volume at the 
shock front); 

is the energy of the elastic deformations, including both shearing and volumetric reversible 
deformations (K is the modulus of volumetric compression of a multicomponent medium); E5 is 
the energy of the gases inside the cavity. In Table i, the upper numbers in each row denote 
the fraction of the corresponding energies with respect to the total energy of the explosion. 
The lower numbers show the fraction of the corresponding energy with respect to the energy 
given up to the surrounding cavity of the medium, i.e., to the total energy of the explosion, 
after the subtraction of the energies of the explosive gases inside the cavity. In what fol- 
lows, the comparison will be made, unless specially stipulated, with respect to the lower 
numbers. 

The data of Table 1 are given for the moment of time when the cavity has attained a max- 
mal radius. However, since the reverse motion of the cavity for the selectedstrength parame- 
ters (see Table i) is not great (less than 5% in all variants), the numbers, characterizing 
the distribution of the energies varies only slightly with a reverse motion of the cavity. 

Carrying out the calculations by the above method, the strength parameters were varied: 
the adhesion o* and the coefficient of dry friction k, the starting porosity of the medium, 
and the character of the saturation of the pore space (gas or water). 

Variants of the calculations 1-3 relate to the case of a monolithic medium. They show 
that the principal fraction of the energy is dissipated with plastic flow. With a rise in 
the strength parameters of the medium o* and k, this fraction rises, Thus, this mechanism 
of the dissipation of the energy of an explosion is dominating for the case of a medium with 
a zero porosity. We note that this result coincides with the conclusions of [2, 3]. 

A considerable part of the energy (10-20%) is dissipated due to shock compression. In 
addition, an appreciable part of the energy is found to be stored in the form of the elastic 
shear and compression energy. With a rise in the strength, the values of E3 and E~ decrease 
considerably. The decrease in E3 is connected with a decrease in the region of the existence 
of shock-wave conditions; E4 is connected with a decrease in the dimension of the region of 
large deformations, which takes place due to a decrease in the radius of the cavity with an 
increase in o* and k. It is important to note that the decrease in the kinetic energy of 
the medium E~ with a rise in the strength parameters. Figure I shows the dependence of E~/Eo 
on the time, where Eo is the total energy of the explosion (the numbering of the curves in 
all the figures coincides with the number of the variant in Table i). It can be seen that 
with a rise in the strength parameters of the medium, it is more difficult to set the sur- 
rounding medium into motion with a gas explosion; as a result, the above-noted fall in the 
final value of E~ takes place. 

The variants of the calculations 5-7 relate to a dry gas-saturated medium with a differ- 
ent strength and porosity. From the data of Table i, it can be seen that the principal dis- 
sipation of energy takes place with plastic flow and due to compression at the shock front. 
For weakly adhering media (k = 0, o* = 150 bar) (variant 5) the latter means of dissociation 
predominates. With a rise in the strength, the plastic dissipation increases and can exceed 
the dissipation at the shock front (variant 6). However, for media with moderate and high 
porosity (variant 7), the dissipation behind the shock front will always be the principal 
fraction. Calculations also show that the fraction ofthe elastic energy E~ is lowered con- 
siderably with a rise in the porosity, and less sharply with a rise in the pore strength. 
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TABLE i 

al 
> 

1 

2 

3 

4 

5 

6 

7 

Type of medium 

Medium with zero por- 
o~ty 

Water-saturated medim 

Gas-saturated medium 

J*, ba] 

150 

3OO 

150 

150 

150 

300 

150 

-1- 
0,5 - -  

- -  12,5 

- -  2,67 

-- 2,67 

-- 6,00 

E, 

0,061 
0,094 
0,056 
0,092 
0,030 
0,056 
0,030 
0,046 
0,0092 
0,0141 
0,0090 
0,014 
0,0084 
0,0130 

E2 

0,280 
0,432 
0,318 
0,525 
0,370 
0,695 
0,282 
0,432 
0,254 
0,390 
0,328 
0,528 
0,180 
0,281 

E, 

0,133 
0,205 
0,102 
0,168 
0,070 
0,130 
0,230 
0,353 
0,356 
0,539 
0,266 
0,430 

01458 
0,707 

E, 

O, 165 
0,254 
O, 130 
0,214 
0,062 
0i117 
O, 122 
O, 187 
0,037 
0,057 
0,036 
0,061 
0,025 
0,039 

E, 

0,351 

0,394 

0,46g 

0,348 

0,35I 

0,382 

0,352 

,7,4 ~ . . . . .  ' 

0 4 8 /2 ~ / t  o 
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: [ 

0,2 

0 4 ~ r t/~o 

Fig. i Fig. 2 Fig. 3 

This obviously takes place due to the fact that the zone of large shear stresses decreases 
with a rise in the porosity. This can be seen in Fig. 2, which illustrates the dependence 
of the maximal radius of the zone of plastic deformations Rp on the porosity of the medium 
with an unchanged power of the explosion (curve i corresponds to the case of a water-satura- 
ted medium, curve 2 to the case of a gas-saturated medium). The conclusion with respect to 
a considerable rise in Es with a rise in the porosity is confirmed by the results of experi- 
mental investigations [ii], The final value of the kinetic energy Ex in a gas-saturated 
medium is approximately an order of magnitude less than the corresponding kinetic energy in 
a medium with zero porosity. This fact is important when considering elastic or seismic 
characteristics of the explosion. 

For a water-saturated porous medium, the same tendenciesare characteristic as for a 
dry porous medium; however, they have a weakly expressed character. Here, the energy dis- 
tribution, in its parameters, approaches the energy distribution of an explosion in a non- 
porous medium. Therefore, with the saturation of the previously dry porous medium with water 
there will be a reinforcement of the mechanical effect of the explosion, 

The results given in Fig. 3 show that the most intense process of dissipation at the 
shock front takes place in the initial stage of the development of the explosion, Then, the 
rise in the curves is smooth and, in the final stage, attains a constant value, Plastic dis- 
sipation (Fig. 4) is characterized by the fact that, with an increase in the effect of the 
strength parameters, the curves of E2(t) become more convex. The arrival of the curves at 
the asymptotic is connected with the end of the phase of plastic flow. 

The dependence of the temperature of the medium on the radius at the moment of the stop- 
ping of the cavity is shown in Fig. 5. It can be seen that the temperature falls sharply with 
an increase in the distance from the wall of the cavity. There is appreciable heatlng-up 
of the medium only in a narrow region immediately adjacent to the cavity. This result is in 
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agreement with the conclusions of [12]. 
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The results given in Fig. 5 show that, with a rise 
in the porosity in a gas-saturated medium, the temperature of the medium increases due to 
the stronger heating-up, taking place behind the shock front. 

In conclusion, we note the following. For a medium with a zero porosity, the principal 
dissipation of energy is connected with plastic flow. A considerable fraction of the energy 
is found to be stored in the elastic energy of the shear and compression deformation, which 
is reversible, and which can obviously be the source of secondary shock waves during the mo- 
ments of time following the explosion. With a rise in the strength, this energy decreases; 
there is also a decrease in the value of the kinetic energy of the medium, which, during the 
last stages of the development of the explosion, can be associated with the energy radiated 
in the elastic stage. 

For dry porous media, the principal mechanism of the dissipation of energy, connected 
with shock compression, i.e., with the irreversible heating of the medium at the front of 
the shock wave, The kinetic energy is an order of magnitude less than in a monolith, and 
decreases with a rise in the strength. The elastic energy is also less than that connected 
with a decrease in the zone of large deformations. 

The saturation of dry media by water approaches the energy characteristics of the explo- 
sion to an explosion in a nonporous medium, i.e., to a reinforcement of the mechanical effect 
of the explosion. 
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